Дата публикации: 29 апреля 2022
Группа ученых из России и Беларуси разработала мощные сверхвысокочастотные (СВЧ) фотодиоды, которые могут использоваться в качестве ключевых компонентов на волоконно-оптических линиях связи. Эти фотодиоды способны выдавать быстроменяющийся ток большой мощности, преобразуя его из быстрого (высокочастотного) лазерного излучения. Технология передачи информации, в которой применяются СВЧ-фотодиоды, относится к радиофотонным и позволяет транслировать СВЧ-сигнал на большие расстояния по оптоволокну почти без потерь и не требует преобразований сигнала вида «аналог-цифра».
Экспериментальная пластина с изготовленными на ней фотодиодами (на этой пластине около 200 фотодиодов)
Результаты работы коллектива исследователей Института физики полупроводников им. А.В. Ржанова СО РАН (ИФП СО РАН) и Государственного научно-производственного объединения «Оптика, оптоэлектроника и лазерная техника» Национальной академии наук Беларуси (НАНБ) удостоены 21 апреля премии имени академика В.А. Коптюга и опубликованы в Journal of semiconductors, «Журнале технической физики» и других изданиях.
Волоконно-оптические линии связи используются повсеместно: в первую очередь, для предоставления широкополосного кабельного интернета и передачи данных сотовой связи. Обычно мы встречаемся с трансляцией именно цифрового сигнала по оптоволокну.
Однако передача аналоговых высокочастотных сигналов на большие расстояния нужна для решения ряда задач спутниковой связи (связи наземных антенн с центром управления), многоканального телевещания (трансляции больших мероприятий, соревнований, передачи видео высокого разрешения в режиме реального времени), синхронизации сетевого времени (при проведении финансовых операций, биржевой торговле, в центрах обработки данных).
Радиофотонная технология нового поколения Radio Over Fiber (радио-по-волокну) не требует преобразования радиочастотного сигнала в цифровой. Она обеспечивает широкую полосу пропускания (от 10 гигагерц и выше), что эквивалентно передаче десятков-сотен гигабит в секунду на расстояния до ста километров.
Фотодиод и золотые электроды (контакты)
Основные компоненты системы передачи данных ? оптоволоконная линия, полупроводниковый лазер, модулятор и фотодиод. Лазер передает информацию по оптоволокну. Модулятор «настраивает» характеристики лазерного луча в соответствии со свойствами входного радиосигнала. Фотодиод на выходе линии передачи преобразует оптический сигнал в электрический для подачи конечному пользователю.
«К фотодиоду предъявляются большие требования: ему предстоит, во-первых, выдавать ток большой мощности (десятки-сотни милливатт), во-вторых, ток должен быть быстроменяющийся, следуя за характеристиками лазерного излучения (диапазон частот 10-50 гигагерц). Важно одновременное выполнение двух требований, и его получить значительно сложнее, чем каждого отдельно», ? говорит один из авторов исследования, старший научный сотрудник ИФП СО РАН кандидат физико-математических наук Александр Михайлович Гилинский.
Разработка конструкции фотодиодов проводилась совместно специалистами НАНБ и ИФП СО РАН, а технология их изготовления была разработана в ИФП СО РАН. Технология сложна и включает 14 этапов, один из важнейших среди них ? синтез многослойной полупроводниковой структуры методом молекулярно-лучевой эпитаксии.
«Полупроводниковая гетероструктура синтезируется на основе твердых растворов индий-галлий-мышьяк и индий-алюминий-мышьяк (InGaAs/InAlAs) на подложке фосфида индия (InP). Тонкие (в десятки и сотни нанометров) слои отличаются по составу — во время синтеза варьируются соотношения молекулярных потоков металлов: индия, галлия и алюминия. Это определяет свойства каждого слоя: поглощающего, барьерного, варизонного. Все вместе они работают так, чтобы фотодиод мог уловить максимальное количество фотонов, быстро и эффективно преобразовать их в носители заряда, при этом минимизировав токи утечки», ? объясняет Александр Гилинский.
После того как гетероструктура выращена в сверхчистых условиях в вакуумной камере, технологи проводят с ней еще много операций, нужных для получения отдельных фотодиодов. Диаметр фоточувствительной площадки готового компонента – от 10 до 40 микрон (микрон – одна тысячная миллиметра). Фотодиод должен быть сравнительно маленьким, так как большой размер препятствует быстродействию ? выдаче часто меняющегося электрического сигнала.
Технические характеристики разработанных устройств аналогичны характеристикам компонентов, производимых за рубежом (в США).
«В Российской Федерации такие фотодиоды на данный момент изготавливались только в ИФП СО РАН. Мы полностью владеем технологией и при необходимости можем в ней что-то поменять, если к изделию предъявляются другие требования», ? подчеркивает Александр Гилинский.
Так выглядят слои фоточувствительной полупроводниковой гетероструктуры (фотодиода) при большом увеличении
Основные компоненты системы Radio Over Fiber ? полупроводниковые, и материал для них может быть синтезирован с помощью метода молекулярно-лучевой эпитаксии.
«Разработанная технология создания фотодиодов дает нам преимущество ? если нужно сделать структуры для других компонентов (лазера, электрооптического модулятора), у нас накоплен большой опыт. К тому же иметь одну технологию для изготовления нескольких разных приборов было бы выгодно, ? можно использовать одни подходы, они не совпадут на сто процентов, но общее сходство будет», ? добавляет Александр Гилинский.
Конечно, сейчас есть и другой способ транслировать радиосигнал «по проводам» ? для этого используется коаксиальный кабель ? многим он знаком, например, как телевизионный. Но радиосигнал СВЧ-диапазона в коаксиальном кабеле затухает очень быстро (на метровых расстояниях), а по оптоволокну может транслироваться на десятки и сотни километров.
В частности, поэтому применение технологии Radio Over Fiber востребовано при проведении трансляций крупных мероприятий — для многоканальной передачи видео высокого разрешения.
В ближайшее время специалисты ИФП СО РАН планируют рассказать о результатах следующего шага — изготовлении фотоприемника с интегрированным усилителем — на конференции «Мокеровские чтения». Для решения этой задачи исследователи (вместе с коллегами из Томска) применяют технологические приемы, разработанные при создании вышеописанных мощных СВЧ-фотодиодов.
Информационная служба Всероссийского портала "Молодой специалист" msrabota.ru